Maximum likelihood estimation of covariance matrices under simple tree ordering
نویسندگان
چکیده
منابع مشابه
Penalized maximum-likelihood estimation of covariance matrices with linear structure
y In this paper, a space-alternating generalized expectation-maximization (SAGE) algorithm is presented for the numerical computation of maximum-likelihood (ML) and penalized maximum-likelihood (PML) estimates of the parameters of covariance matrices with linear structure for complex Gaussian processes. By using a less informative hidden-data space and a sequential parameter-update scheme, a SA...
متن کاملComputationally efficient maximum-likelihood estimation of structured covariance matrices
A computationally e cient method for structured covariance matrix estimation is presented. The proposed method provides an Asymptotic (for large samples) Maximum Likelihood estimate of a structured covariance matrix and is referred to as AML. A closed-form formula for estimating Hermitian Toeplitz covariance matrices is derived which makes AML computationally much simpler than most existing Her...
متن کاملEstimation of Covariance Matrices under Sparsity Constraints
Discussion of “Minimax Estimation of Large Covariance Matrices under L1-Norm” by Tony Cai and Harrison Zhou. To appear in Statistica Sinica. Introduction. Estimation of covariance matrices in various norms is a critical issue that finds applications in a wide range of statistical problems, and especially in principal component analysis. It is well known that, without further assumptions, the em...
متن کاملMaximum likelihood estimation of oncogenetic tree models.
We present a new approach for modelling the dependences between genetic changes in human tumours. In solid tumours, data on genetic alterations are usually only available at a single point in time, allowing no direct insight into the sequential order of genetic events. In our approach, genetic tumour development and progression is assumed to follow a probabilistic tree model. We show how maximu...
متن کاملConstrained Maximum-likelihood Covariance Estimation for Time-varying Sensor Arrays
We examine the problem of maximum likelihood covariance estimation using a sensor array in which the relative positions of individual sensors change over the observation interval The problem is cast as one of estimating a structured covariance matrix sequence. A vector space structure is imposed on such sequences, and within that vector space we define a constraint space given by the intersecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2004
ISSN: 0047-259X
DOI: 10.1016/s0047-259x(03)00094-0